
Vol.:(0123456789)

Operations Research Forum (2023) 4:20
https://doi.org/10.1007/s43069-023-00193-9

1 3

ORIGINAL RESEARCH

Collinear Gradients Method for Minimizing Smooth Functions

Optimality Conditions and Algorithms

Victor K. Tolstykh1 

Received: 11 November 2020 / Accepted: 31 December 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
A new optimization method for unconstrained smooth functions is proposed. It is
based on a special form of the necessary optimality condition in the vicinity of the
optimum. The method uses the first derivatives of the objective function, while
demonstrating convergence as Newton method (second derivatives). Illustrations of
how the method works step by step are provided. Algorithms for practical imple-
mentation are considered, and numerous test calculations demonstrating the high
efficiency of the method are presented.

Keywords  Numerical optimization · Minimization of functions · Gradient ·
Necessary conditions

Mathematics Subject Classification  49K10 · 49M5 · 65K05

1  Introduction

For the first time, the idea of the collinear gradients method (CollGM) was presented
at the conference [1] for solving optimal control problems as an extreme problem:
u∗ = arg min J(u) , where u∗ is a desired optimal solution (optimal control), J(u) is a
smooth objective function, u ∈ En being a control in n-dimensional Euclidean space.
To solve this problem, we will use iterative algorithms based on the gradient ∇J .
The efficiency of the algorithms will be estimated by the number of calculations
J(uk) and ∇J(uk) on all iterations k = 0, 1, 2, ... to achieve a given accuracy.

If the objective function is quadratic and strictly convex, then CollGM reaches the
optimum u∗ in one iteration, like Newton method. CollGM is a first-order method,
that does not use the Hessian H(uk) with second derivatives of the objective function

 *	 Victor K. Tolstykh
	 mail@tolstykh.com

1	 Donetsk National University, Donetsk, Russia

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-023-00193-9&domain=pdf
http://orcid.org/0000-0001-9055-1102

	 Operations Research Forum (2023) 4:20

1 3

 20   Page 2 of 13

(as Newtonian methods do) and does not use different approximations of H(uk) (as
quasi-Newtonian methods like BFGS do or methods with finite-difference represen-
tations of H(uk) ). CollGM, at each iteration k, makes special sub-iterations similar to
the inexact Newton methods (Newton-CG type), but their sub-iterations are different.

Test calculations show that CollGM can be successfully used for non-convex
optimization too. Its efficiency is no worse than different versions of Newton meth-
ods, quasi-Newton and conjugate gradient methods.

To construct CollGM algorithms, we will need a specific form of the optimality condi-
tion based on the behavior of the gradient in the vicinity of u∗ . This is our starting point.

2 � Optimality Conditions

In the classical theory of extreme problems, to realize the necessary optimality con-
dition in the space En , the sequences of controls uk

k→∞
�������������������→ u∗ are considered, which in

the dual space ensure the convergence to zero of the norm of the gradients:

In our case the dual space is En . Therefore, we will not further specify the space
for norm and scalar product. We will consider sequences of controls that provide
stronger component-based convergence of gradients, when components ∇iJ(u

k) are
changed proportionally for all i ∈ {1...n} from iteration to iteration. This conver-
gence occurs when the vectors ∇J(uk) are collinear for all k.

The essence of convergence with collinear gradients for the case of a strictly
convex quadratic function J(u), u ∈ E2 is illustrated on the left in Fig. 1 on the
background along the level lines (ellipses). We see that the vectors ∇J are collinear
for all points of the direction d. This direction is passing through the optimum u∗.

(1)||∇J(uk)||
k→∞
�������������������→ 0.

Fig. 1   The collinearity of the gradient vectors

1 3

Operations Research Forum (2023) 4:20 	 Page 3 of 13  20

Definition 1  The vector ∇J(uk) ∈ En is changed collinearly from step k to step k + 1
if the components of this vector are changed proportionally:

If ∇iJ(u
k) = 0 for any i, then ∇iJ(u

k+1) = 0 is required. In this case, the ratio of
zeros should be considered equal to constk.

Theorem 1  If a function J(u), u ∈ En is quadratic and strictly convex, then for con-
vergence to the optimum u∗ , it is necessary and sufficient that the sequence of vectors

Proof  (Necessity) We write J(u) as the following scalar product in En:

where A is a positive definite symmetric matrix n × n , ∇J(u) = Au , Au∗ = 0.
Let d ∈ En be the direction from the point uk to the point u∗ . The sequence of

steps u∗ − uk
k→∞
�������������������→ 0 , that lie in this direction, can be considered as a set of collinear

vectors. Multiplying this collinear sequence by the matrix −A , we get:

That is, for u∗ − uk
k→∞
�������������������→ 0 in the direction d, the condition (2) must hold.

Proof  (Sufficiency) The direction d is the only place to determine collinear gradi-
ents. Indeed, if the sequence ∇J(uk)

k→∞
�������������������→ 0 collinearly , then multiply it with −A−1

(the inverse matrix exists, since A is a positive definite matrix), we get:

Therefore a sequence of collinear vectors u∗ − uk , directed to the point u∗ , will lie
on the same line d. This means that if J(u) is strictly convex, quadratic, and limit (2)
holds, then this is sufficient for the direction d exist and to be unique. 	� ◻

If we consider that ∇2J = A ≡ H , then the left part of the above operation
can be represented as −H−1∇J = pN , where pN is the minimization direction of
Newton method, which, as is known, directed to u∗ for a strictly convex quadratic
function. In the right part of the above operation, we have a sequence lying in the
direction d to u∗ . Therefore, the following statement follows.

Corollary 1  For a quadratic strictly convex function J(u), the optimality condition
(2) defines the direction d to the minimum using collinear gradients, just as Newton
method defines the direction of pN using the second derivatives:

∇iJ(u
k+1)

∇iJ(u
k)

= constk, i ∈ 1… n, 0 < constk < ∞, k = 0, 1, 2...

(2)∇J(uk)
k→∞
�������������������→ 0 collinearly.

J(u) =
1

2
⟨Au, u⟩,

−A(u∗ − uk) = Auk − Au∗ = ∇J(uk)
k→∞
�������������������→ 0 collinearly.

−A−1∇J(uk) = −A−1(Auk − Au∗) = u∗ − uk
k→∞
�������������������→ 0 collinearly.

	 Operations Research Forum (2023) 4:20

1 3

 20   Page 4 of 13

where the number b = ||H−1∇J||∕||d|| is a step-size.

Classical necessary condition (1) only requires reducing the length of the vec-
tor ∇J , while ignoring the behavior of the components ∇iJ , i.e., ignoring the
direction of the coming to u∗ . At the same time, necessary condition (2) requires
approaching u∗ in a strictly defined direction, namely in the direction with col-
linear gradients. This constitutes the fundamental differences between the neces-
sary conditions (1) and (2).

3 � Collinear Gradients Algorithms

CollGM is based on the optimality conditions of Theorem 1. In the neighborhood
of any uk we can find uk∗ , based on collinear gradients, and construct the direction
dk = (uk∗ − uk) as shown on the right in Fig. 1. Note that there can be two points
uk∗ : the front (relative to the minimization direction, here the step-size will be
bk > 0 ) and the back (here bk < 0).

If J(u) is quadratic and strictly convex, then it follows from the necessary and
sufficient conditions of Theorem 1, that for any initial guess u0 there exists a
direction d0 with collinear gradients such that with an optimal step-size b0 we
reach the optimum u∗ in one step (one step CollGM):

If J(u) is not quadratic, then CollGM must be used at each iteration uk , assum-
ing that J(u) in some vicinity of uk is sufficiently close to quadratic. Here we
can use the necessary condition of Theorem 1 only. Then, instead of the one-step
algorithm (3), we get a multi-step CollGM:

The step-size bk can be easily found from the extreme condition for parabola
J(b) = J(uk + bdk) . For known gradients at uk∗ and uk we get:

If CollGM (4) is applied to non-convex functions, then formula (5) can lead to
the maximum of J(b) for some uk . Therefore, to get the minimization step bkdk in
(4), we must use the following algorithm.

pN = −H−1∇J = bd,

(3)u∗ = u0 + b0d0.

(4)uk+1 = uk + bkdk, k = 0, 1, 2...

(5)bk =

�
1 −

⟨∇J(uk∗), dk⟩
⟨∇J(uk), dk⟩

�−1

, k = 0, 1, 2...

1 3

Operations Research Forum (2023) 4:20 	 Page 5 of 13  20

4 � Choosing Collinear Gradients

In accordance with the necessary condition (2), at each step k we must find a point u
in the vicinity of uk where the gradient ∇J(u) will be collinear to ∇J(uk) . This value
u is equal uk∗ , which we can use to do the next step k + 1 . We will evaluate the col-
linearity measure by the divergence (residue) of the gradient orts as [1] (for infinite-
dimensional case — [2]):

where if sgn⟨∇J(u),∇J(uk)⟩ ≥ 0 , then s = 1 , else s = −1 . The sign s allows us to
estimate the collinearity of gradients both co-directional and opposite. In this case,
max ��rk(u)�� =

√
2.

Expression (6) is a system of n non-linear equations whose root we must find:

Problem (7) can be considered as a minimization problem for some function Fk(u)
whose gradient is ∇Fk(u) ≡ rk(u) . The extremum of Fk , under necessary condition
||∇Fk|| = 0 , gives the root of the Eq. (7), i.e., these problems are equivalent:

To solve problem (7), it is advisable to use gradient minimization methods for
Fk(u) since its gradient ∇Fk(u) is already known. In this case, we get iterations ul ,
which is the same thing as sub-iterations ukl , and a sequence of residues rk(ul)

def
= rl .

Usually, the Fletcher-Reeves conjugate gradient method (CGM) is used:

where pl = −rl + � lpl−1 , � l = ||rl||2∕||rl−1||2 , �1 = 0 , � l is a step length parameter that
we will find from the assumption that the residue (6) is linear (i.e., the function Fk(u) is
quadratic) in a small vicinity of the point uk . Then in this vicinity � l = ||rl||2∕

⟨
pl,Hlpl

⟩

[5], where Hl = ∇2Fk(ul) . The vector Hlpl can be found by numerical differentiation in
the direction pl [6, 7]:

(6)rk(u) =
∇J(u)

||∇J(u)|| s −
∇J(uk)

||∇J(uk)||
,

(7)rk(u) = 0 ∈ En.

Fk(u) → extr ⟺ ||∇Fk(u)|| ≡ ||rk(u)|| → 0.

(8)ukl+1 = ukl + � lpl, l = 1, 2,… ,

	 Operations Research Forum (2023) 4:20

1 3

 20   Page 6 of 13

where ukh = ukl + hpl∕||pl|| and h is a small positive number such that
⟨
pl,Hlpl

⟩
≠ 0.

As a criterion for successful completion of sub-iterations (8), we take the small-
ness of rl relative to its maximum:

where c1 is the accuracy parameter for satisfying the collinearity of gradients.
Since we will have to make approximate calculations (assumption of local lin-

earity of the residue, numerical differentiation, and other computational errors),
we need to control the convergence of CGM (8) at each sub-iteration l.

First, we will limit the excess number of sub-iterations l ≤ lmax . Besides, taking
into account that lmax must be increased with increasing dimension n of the problem
and with increasing accuracy of its solution (i.e., with decreasing c1 ), we will accept

Secondly, it is advisable to control the excess number of sub-iterations under
practical termination of the CGM convergence:

Then, due to various noise, the direction pl may lose its conjugacy, so it should
be periodically cleared, for example, if l = n, 2n, 3n… then � l = 0.

Now we need to define the first step for sub-iterations. Let it be 45 degrees
angle to all coordinate axes in En by length �k in the direction of growth of J(uk):

where �k is the initial radius of the vicinity of uk . Approximately in this vicinity, we
will implement necessary condition (2).

To improve the accuracy of solution (7), we will decrease the radius �k as the
iterations uk approach the extremum:

However, there is a potential danger of “disappearing” of the descent direc-
tion when �k becomes too small, therefore, we should limit the minimum value of
�k ≥ �m , where �m is a small float positive number. For example, �m = 105��0 , where
� is the machine epsilon. Moreover, the distance from ukl to uk it is also reasonable to
monitor in the same way. So, we will demand

(9)Hlpl ≈
r(ukh) − r(ukl)

h∕||pl||
,

��rl�� ≤ c1

√
2, 0 ≤ c1 < 1,

lmax = integer|c2 ln c1 ln n|, c2 ≥ 1.

|||||

||rl|| − ||rl−1||
||rl||

|||||
≤ c1, l > 1.

(10)u
k1
i
= uk

i
+

�k√
n
sgn∇iJ

k, i = 1… n, k = 0, 1, 2...,

�k = min

(
�k−1

||∇J(uk)||
||∇J(uk−1)||

, �0
)
, k = 1, 2...

1 3

Operations Research Forum (2023) 4:20 	 Page 7 of 13  20

and ||ukl − uk|| ≥ �m, l ≥ 1.

A few words about the convergence of the obtained algorithm “Direction for
CollGM”. If system (8) were linear, then function Fk(u) would be quadratic and its
minimum would be reached in l ⩽ n steps [5] (in the absence of calculation errors).
But, for any quadratic and non-quadratic objective function J(u), we have to mini-
mize the non-quadratic function Fk(u) by CGM with a “quadratic” step � . This may
be true in a sufficiently small vicinity of uk . Therefore, according to (10), the step �k
should not be large, and therefore, according to (11), �0 should be sufficiently small.

The parameter �0 should be set as the distance ||u0 − u01 || , at which we would
like to estimate the collinearity of the gradients. For example, for a quadratic
function it might be �0 ≈ 0.01||u0 − u∗|| , for a non-quadratic, �0 might be the dis-
tance we would like to take as the first careful step.

To minimize a quadratic function in one step by GollGM (3), do not limit the
number of sub-iterations, i.e., in procedure GetDirection, the parameter c2 should
be set sufficiently large (from 2 to 5), and to obtain a satisfactory collinearity of
gradients, the parameter c1 should be set sufficiently small (from 10−5 to 10−12 ).
Step-size b0 should be calculated using the formula (5).

When minimizing a non-quadratic function or quadratic function with noise by
CollGM (4), it is not necessary to achieve high accuracy at each iteration k under
solving (7). Here, you can take c1 from 10−2 to 10−6 and c2 = 2 . The best value
of c1 depends on the type of function J(u) and the initial guess u0 . Step-size bk
should be calculated using procedure GetStep.

(11)�k = max

[
min

(
�k−1

||∇J(uk)||
||∇J(uk−1)||

, �0
)
, �m

]
, k = 1, 2...

	 Operations Research Forum (2023) 4:20

1 3

 20   Page 8 of 13

5 � Illustrations of How the Method Works for the Two‑dimensional
Quadratic Case

To visually illustrate the work of CollGM (3) consider the optimization of the strictly
convex quadratic Schwefel 1.2 function [9] for u ∈ E2:

The results of one-step optimization by the algorithm (3), (5) with sub-iterations
u0l (gray points) for the case of three starting points u0 (black points) are shown in
Fig. 2. According to (10), we performed the first step of sub-iterations u01 − u0 at
45 degrees angle. For visibility, we took a fairly large �0 = 0.5 (dotted circles). The
collinearity accuracy and the number of sub-iterations were set by the parameters
c1 = 104 and c2 = 2.

For all starting points u0 , there were no more than three sub-iterations, which
gave us the three back points u0∗ and the minimization directions −d0 = u0∗ − u0 . We
can see that each CollGM minimization step b0d0 = u∗ − u0 (where b0 < 0 and satis-
fies (5)) corresponds to Newton steps, i.e., b0d0 = pN , which confirms Corollary 1.

Thus, the fulfillment of the necessary condition of the Theorem 1 (the gradients
∇J(u0) and ∇J(u0∗) are collinear) implements the sufficient condition (vector −d0 is
directed to the optimum u∗ ), which allowed us to solve the problem as Newton method.

6 � Tests and Illustrations for the Two‑dimensional Non‑convex Case

To visually illustrate the multi-step CollGM (4) consider the non-convex optimiza-
tion problems [3] with n = 2 . Here Rosenbrock function:

J(u) = u2
1
+ (u1 + u2)

2, u∗ = (0, 0).

Fig. 2   Sub-iterations of the one-
step CollGM

1 3

Operations Research Forum (2023) 4:20 	 Page 9 of 13  20

Himmelblau function 2:

Himmelblau function 4:

Himmelblau function 28:

Our cubic function:

For all functions except (15), which has four minimums, the starting point was set
u0 = (−0.8,−1.2) and minimization was completed under the condition

Function (15) was minimized up to |J(uk) − J(uk−1)|∕J(u0) ≤ � from the point
u0 = (0, 0).

The parameters of CollGM were set to the following: c1 from 10−2 to 10−6 ; c2 = 2 ;
�0 = 0.01 , �m = 10−15�0 (in our calculations q = 20 ), h = 10−5.

Here and further, all the methods were implemented by the author in Delphi lan-
guage. For comparison, the following four variants of Newton method were tested:

1.	 Newton — classical Newton method (analytical Hessian H) with bk = 1;
2.	 Newton-FD — Newton method using finite-difference H via ∇J [4, 7, 8] with

differentiation step h = 10−8 , bk = 1;
3.	 Newton-TR — Trust region Newton method [4, 6, 7] with maximum (also initial)

radius equal to 2;
4.	 Newton-CG — inexact Newton method [6, 7] with CGM sub-iterations and forc-

ing parameter �k = min
�
c,
√
��∇Jk��

�
 [7], c = 10−3 , bk = 1.

At iteration where H ≤ 0 , all methods (except CollGM) were replaced by the steep-
est descent method (SDM) along the antigradient with the Nocedal-Wright step-
size [7] under strong Wolfe condition. The step-size was calculated with the Wolfe
parameters: c1 = 10−4 ; c2 = 0.1 ; initial max bk = 2

√
n.

The optimization results are shown in Table 1, where CollGM has demonstrated
good performance and better stability of calculations.

Figure 3 shows the contours of the test functions and the descent trajectories of
CollGM form initial u0 to optimum u∗ . The trajectories coincide with the best execu-
tions (solid lines) of Newton method variants everywhere.

(12)J(u) = 100(u2 − u2
1
)2 + (1 − u1)

2, u∗ = (1, 1).

(13)J(u) = (u2 − u2
1
)2 + (1 − u1)

2, u∗ = (1, 1).

(14)J(u) = 100(u2 − u3
1
)2 + (1 − u1)

2, u∗ = (1, 1).

(15)
J(u) = (u2

1
+ u2 − 11)2 + (u1 + u2

2
− 7)2,

u∗ ≈ {(3, 2), (−2.8, 3.1), (−3.8,−3.3), (3.6, 1.8)}.

(16)J(u) = 2(u3
1
+ 2u2

1
) + (u3

2
+ 2u2

2
), u∗ = (0, 0).

||uk − u∗||∕||u0 − u∗|| ≤ � = 0.01.

	 Operations Research Forum (2023) 4:20

1 3

 20   Page 10 of 13

Functions (12), (13) were minimized equally well by all methods. Function (14)
turned out to be difficult for minimization by Newton and Newton-TR methods.
They went along the function bottom in extremely small steps to the optimum for
hundreds of iterations (see Table 1). Also, Newton-CG had not very successful tra-
jectory (gray dotted in Fig. 2) and convergence. For function (15), the solid line in
Fig. 2 shows CollGM and Newton-TR trajectories. The gray dotted line at the same
figure shows Newton and Newton-CG methods trajectory, as not a good trajectory.
Newton-FD for this function led to the different minimum (the lower right point).
The Newton and Newton-TR methods have failed to minimize function (16) due to
the analytical Hessian was always negative.

All traditional methods encountered H < 0 and decreased their effectiveness
due to the steps done by SDM, where CollGM has never done that. Only one time
CallGM in the first step for function (15) (where step is along the colinear gradients,
but not along −∇J ) has demanded to calculate step-size not by simple formula (5),
but by the Nocedal-Wright method in procedure GetStep.

We should note that Newton-CG and CollGM are both of the first order and with
CGM sub-iterations. These methods are a bit similar, but have significant differences:

1.	 Newton-CG method searches for direction pk
N

 when Hkpk
N
≅ −∇Jk . CollGM

searches for the direction dk with collinear gradients;
2.	 Newton-CG method is applied at the point uk , and CollGM is applied in the rela-

tively large vicinity of the point uk;
3.	 Newton-CG is forced to take antigradient steps when J(u) is non-positively convex.

CollGM takes steps only in the direction of collinear gradients for any convexity;
4.	 CollGM very rarely uses to the choice of a step-size bk , which requires additional

expensive calculations other than the simple formula (5).

Since CollGM and Newton-CG are formally close to each other in terms of implemen-
tation technique, we will further test their capabilities at different initial gueses of u0
on the function (14). The results are presented in Table 2. As we can see, Newton-CG
method in most cases was unable to minimize the function. Often H < 0 appeared

Table 1   Number of iterations (and calculations) for the methods

a method has done a step by SDM near zero
b method has done the first step by SDM
c method has done the first two steps by SDM
d all steps were done by SDM

Function Newton Newton-FD Newton-TR Newton-CG CollGM, c1

(12) 3 (5) 3 (11) 31 (98) 3 (11) 3 (14), 10−4

(13) 5 (9) 5 (19) 5 (14) 6 (21) 5 (18), 10−3

(14) 669 (1341)a 4 (15) 677 (2033)a 6 (41)b 4 (29), 10−6

(15) 8 (15) 4 (35)c 3 (8) 4 (34)c 5 (16), 10−2

(16) — d 3 (19)c — d 4 (19)c 4 (15), 10−2

1 3

Operations Research Forum (2023) 4:20 	 Page 11 of 13  20

near the bottom, and the following antigradient steps took the solution far from the
optimum (the step-size was almost infinite). Apparently, Newton-CG with trust region
method should have been used here. In contrast, CollGM demonstrated high perfor-
mance and good efficiency at all u0 . The latter never had H < 0 and performed all the
steps by a simple formula (5).

Fig. 3   Minimizing by the collinear gradients

Table 2   Number of iterations (and calculations) for the function (14)

Method Initial guess u0

(2,−0.8) (0.2, 2) (−0.8, 1, 4) (0, 0) (−1.2, 0, 2) (0.2,−1, 2)

Newton-CG — — — 2 (6) — 3 (11)
CollGM 4 (23) 3 (18) 4 (41) 2 (11) 4 (33) 3 (20)

	 Operations Research Forum (2023) 4:20

1 3

 20   Page 12 of 13

7 � Tests for the Multidimensional Non‑convex Case

Consider the generalized Rosenbrock function [10, 11], a variant that is considered
the most difficult to analyze, and numerical minimization [12]:

In [12] for the case n = 30 , it is shown that in the area U = {ui ∈ [−1, 1]}n
i
 , function

(17) has 108 stationary points, including the global minimum u∗ = (1,… , 1) , and local
minimum u ≈ (−1.1,… , 1) . The other 106 are saddle points. Optimization [12] was
implemented by running Newton method 108 times with a random u0 from a given U.

We also took n = 30 and set of eight various u0 . The test conditions for CollGM
were the same as in the previous section with the exception �0 = 0.1 (where
�0 ≈ 0.02maxU ||u||E30 ). For comparison with CollGM, the traditional methods
of the first order were tested: Fletcher-Reeves and Polak-Ribière CGM [5, 8] with
restart at every 3n iterations, quasi-Newton BFGS [3, 4, 6, 7] and LBFGS [6, 7] with
a memory of the last five steps and Newton-CG. All methods (except Newton-CG
where bk = 1 ) were used with a step-size bk according to the golden section method
(up to ||uk+1 − uk|| < 𝜖||u0 − u∗|| ) and Nocedal-Wright method. In total, there were
nine algorithms plus CollGM.

All algorithms using the Nocedal-Wright method for bk ended up with conver-
gence far from the u∗ with bk ≅ 0 . The real results came with bk by the golden section
method. Under these conditions, the Fletcher-Reeves algorithm was much better than
the Polak-Ribière, and LBFGS was almost always was more efficient than BFGS.
Newton-CG was able to minimize the function in only three cases of u0 out of eight.

Testing results of Fletcher-Reeves CGM, LBFGS (both with golden section) and
CollGM are shown in Table 3. CollGM has demonstrated high performance, and
the best efficiency. The step parameter bk was almost always calculated by a simple
formula (5), in rare cases the Nocedal-Wright step was used, namely, when u0 was
equal to: 3 (two steps); 4, 5 (one step); 7 (four steps). Note that CollGM under these
conditions showed approximately the same results using the golden section as when
using the Nocedal-Wright.

(17)J(u) =

n−1∑

i

[
100(u2

i
− ui+1)

2 + (ui − 1)2
]
.

Table 3   Number of iterations (and calculations) for different initial guesses

Initial guess u0 CGM LBFGS CollGM, c1

1 (−1.2, 1,… ,−1.2, 1) 602 (6030) 385 (3860) 76 (771), 10−3

2 (−0.8,−1.2,… ,−0.8,−1.2) 604 (5445) 272 (2457) 48 (951), 10−4

3 (0.5,−1.2,… , 0.5,−1.2) 500 (5010) 386 (3870) 54 (722), 10−3

4 (−1,… ,−1) 685 (6174) 267 (2412) 49 (976), 10−4

5 (1.2,−1.2,… , 1.2,−1.2) 695 (6960) 392 (3930) 73 (766), 10−3

6 (2, 0.8,… , 2, 0.8) 62 (687) 2432 (26757) 13 (392), 10−4

7 (−1,… , 1) 719 (7199) 898 (8989) 56 (935), 10−5

8 (−1,… , 0) 625 (6256) 385 (3856) 49 (1072), 10−4

1 3

Operations Research Forum (2023) 4:20 	 Page 13 of 13  20

Recall that the parameter c1 sets the gradient collinearity accuracy for the quadratic
approximation of J(u) at the point uk . Obviously, when minimizing a non-quadratic
function, it is hardly possible to preset the best value of c1 for all uk . Here a numerical
experiment is necessary, which was done for Table 3.

8 � Conclusions

Based on the necessary condition for optimality of Theorem 1, we were able to
construct collinear gradients algorithms and achieve good convergence to the opti-
mum in a convex quadratic problem and in a set of complex non-convex problems.
CollGM has demonstrated results as good as, and in some cases better than various
variants of Newton method, quasi-Newton methods, conjugate gradient methods.
When minimizing quadratic functions, CollGM behaves completely like Newton
method, which is explained by Corollary 1.

The presence of configurable parameters of the method (primarily c1 , as well as
c2 , �0 ) on the one hand makes its use informal, but on the other hand allows us to
configure the method to effectively solve complex problems where other methods
are extremely inefficient or even unusable.

Data Availability  Data sharing not applicable to this article as no data sets were generated or analyzed
during the current study.

Declarations 

Conflict of Interest  The author declares is no competing interests.

References
	 1.	 Tolstykh VK (2000) New first-order algorithms for optimal control under large and infinite-dimensional

objective functions. In: Deville M & Owens R (eds) Proc. of the 16th IMACS World Congress on Sc.
Computation, Appl. Mathematics and Simulation, Lausanne-Switzerland, pp 307

	 2.	 Tolstykh VK (2012) Optimality conditions and algorithms for direct optimizing the partial differen-
tial equations. Engineering 7:390–393

	 3.	 Himmelblau DM (1972) Applied Nonlinear Programming. McGraw-Hill, New York
	 4.	 Dennis JE, Schnabel Robert B (1996) Numerical methods for Unconstrained Optimization and Non-

linear Equations. SIAM, NJ
	 5.	 Fletcher R (1987) Practical Methods of Optimization. John Wiley & Sons, New York
	 6.	 Kelley CT (1999) Iterative Methods for Optimization. SIAM, Philadelphia
	 7.	 Nocedal J, Wright SJ (2000) Numerical Optimization. Springer, New York
	 8.	 Polak E (1997) Optimization: algorithms and consistent approximations. Springer, New York
	 9.	 Schwefel H-P (1995) Evolution and Optimum Seeking. Wiley Interscience, New York
	10.	 Andrei Neculai (2008) An Unconstrained optimization test functions. Advanced Modeling and

Optimization 1:147–161
	11.	 Shan Y-W, Qiu Y-H (2006) A note on the extended Rosenbrock function. Evol Comput 1:119–126
	12.	 Kok S, Sandrock C (2009) Locating and characterizing the stationary points of the extended rosen-

brock function. Evol Comput 3:437–453

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

	Collinear Gradients Method for Minimizing Smooth Functions
	Abstract
	1 Introduction
	2 Optimality Conditions
	3 Collinear Gradients Algorithms
	4 Choosing Collinear Gradients
	5 Illustrations of How the Method Works for the Two-dimensional Quadratic Case
	6 Tests and Illustrations for the Two-dimensional Non-convex Case
	7 Tests for the Multidimensional Non-convex Case
	8 Conclusions
	References

